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A generating functional for the equal-time spatial probability density functions 
which represent the ensemble of turbulent incompressible Navier-Stokes fluids 
is introduced. By formally solving the linear evolution equation satisfied by this 
functional, the probability densities are represented as functional integrals. It is 
shown that the generating functional can be regarded as the space characteristic 
functional of a generalized random field defined on the phase space spanned by 
the material position and velocity fields of a fluid particle. The interpretation of 
this random field, which satisfies a dynamical equation similar to Vlasov's, is 
clarified through the formal analogies between the statistics of molecules and 
fluid particles at the functional level. A class of statistically realizable and 
solvable models is also considered within the context of the present formalism. 
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1. I N T R O D U C T I O N  

As in the case of in terac t ing  molecules,  the f in i te -d imensional  p robab i l i t y  
dens i ty  funct ion (p.d.f.) a p p r o a c h  to tu rbu len t  flows leads to c losure  
problems.  Due  to viscous foces and  the non loca l  re la t ion between pressure 
and  velocity fields, the evolu t ion  equa t ion  for the n-poin t  p.d.f, fn 
assoc ia ted  with the spat ia l  (Euler ian)  veloci ty field u(x. t) canno t  be 
expressed in terms of  fn a lone  for any  n/> 1; it involves bo th  f ,  and  fn + 1. 
The s ingle- t ime n-poin t  spa t ia l  p.d.f, f,, is a funct ion of  6n + 1 var iables  and  
is defined by 

f ~ ( v l , x l  ..... v~,xn,  t) d v ~ . . . d v ~ = P r o b  Vk<U(Xk, t ) < v ~ + d V k  (1) 
k 1 
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where xk and vk are the position and velocity vectors associated with point 
k in the fluid at time t, respectively. The coupled sequence of dynamical 
equations for these p.d.f.'s, which manifest the closure problem, appeared 
for the first time in the work of Lundgren (l) and Monin, ~2~ and the 
corresponding equivalent hierarchy for the vorticity field V x u was presen- 
ted by Novikov. (3) The motions of isolated boundary-free incompressible 
Newtonian fluids with uniform density p and kinematic viscosity v are well 
described by the Navier-Stokes equation 

~?--~-+UP~x----7=v Au~--z -  ~ dXl 
,+rc~  ax ~ I x - x x l  ax~ax~ 

(2) 

with a prescribed initial state u(x, to) ==- Uo(X) which satisfies V- u0 = 0; here, 
ul = u~(xl, t), superscripts specify the vector components, and a sum over 
the repeated Greek indices is implied. By adopting the assumption that 
each realization in the ensemble of turbulent flows evolves according to (2), 
one derives a coupled hierarchy for p.d.f.'s (the LMN hierarchy) as 

Ofn-t-Ot v~--+-~v~x~ dx"+ldv"+'F~(xk-x"+l ' v"+l ) f~+l  = 0  (3) 
k = l  

where n = 1, 2 .... and the function 

1( 
F~(x-  y, v) = - ~  v~v' ~x ~ ~3x~ ax ~ Ix - Yl ~- vv~j2 Ix - (4) 

expresses the pressure and viscous forces between fluid particles. Here, for 
convenience, the statistics of turbulence ensemble at time t>to is 
presumably determined by the prescribed statistics of Uo(X) only. In 
addition to (3), the p.d.f.'s also satisfy various consistency and incom- 
pressibility conditions. (4/ Although the temporal and spatial scales 
associated with fluid particles which represent a turbulent medium are 
not similar to those of actual molecules, and the interaction force (4) is 
dissipative and velocity dependent, it is possible to exploit the formal 
similarity between (3) and the BBGKY hierarchy to some extent. (5-8) 

The closure problem associated with (3) can formally be avoided by 
incorporating the entire family of p.d.f.'s into a functional. Clearly, a 
variable which carries all the information contained in the infinite sequence 
{fnln >/1 } for all times is statistically equivalent to the probability measure 
associated with u(x, t). This paper presents a functional formulation which 
is related to the p.d.f, hierarchy of Navier-Stokes turbulence theory in the 
similar way that Bogolyubov's functional formalism (9) is related to the 
molecular BBGKY hierarchy. It turns out that this formalism is struc- 
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turally connected to the LMN hierarchy in the same way that Hopf's 
original formulation (1~ is related to the hierarchy of moments of u(x, t). In 
Section2, by using material (Lagrangian) flow variables, a functional 
which generates the p.d.f.'s of u(x, t) is introduced and a closed, second- 
order linear evolution equation for this functional is presented and the 
equation is reinterpreted as the Hopf equation associated with a general- 
ized scalar random field defined on the six-dimensional phase space which 
is spanned by the material position and velocity fields of a fluid particle. 
This field statistically plays the role of a microscopic phase density for fluid 
particles and specifies the Navier-Stokes ensemble completely. Section 3 
contains the integral representations of p.d.f, generating functional and 
n-point p.d.f. Some exactly solvable and realizable fluid dynamical models 
and analogies to the molecular systems are also presented in this section. 
In concluding in Section 4, various generalizations are briefly mentioned. 

2. PDF  G E N E R A T I N G  F U N C T I O N A L  A N D  ITS 
I N T E R P R E T A T I O N  

Let r(a, t) and v(a, 0-(8/80 r(a, t) be the material position and 
velocity fields, respectively, of a fluid particle which is identified with its 
initial position r(a, to)= a at time to. We have 

v(a, t)= u(r(a, t), t) (5) 

and for incompressible fluids det(Sr~/Sa ~) = 1 or, equivalently, V- u = 0 for 
all t > to. Now consider the following complex-valued functional: 

GDT(x, v), t]= (exp {i fR3da q(r(a, t), v(a, t))}) (6) 

where q(x, v) is a real time-independent test function defined on Euclidean 
space R 6, that is, on the phase space of a single fluid particle. Here, the 
bracket ( . . . )  indicates an averaging over the ensemble of Navier-Stokes 
flows at time t or, in general, an integration over the measure associated 
with random fields inside the bracket. G[r/, t] incorporates all the 
statistical information contained in the infinite sequence of f , .  Indeed, from 
(5) and (6) one can write 

G[q, t] = (exp {i ic dx q(x, u(x, t))} ) (7) 

by applying the incompressibility condition, and consequently 
. n  p ( ,  

G[~/, t ] =  Z 
n ~ > 0  ' 

where and in the following we set w-= (x, v). 
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G[t/, t] defined as (6) contains all the statistical information about 
u(x, t) at a given time; however, (6) does not give the multiple-time 
statistics. From a prescribed initial statistical state GOl, to]=Go[q], 
G[t/, t] is evidently determined by the dynamics of u(x, t). Therefore, it 
directly follows from (2), (4), and (7) that 

f O 5G 8Gat - dw~ ~(Wl)V ~ OX]~ (~](Wl) 

q- i f f  dw I dw 2 r/(Wl) F~(W1, w2) 
63 ~2G 

(9) 

(lo) 

V 6 = - V ~ x  i&l(w~)6 dw2F~(w~,w2)~v~i6q(w~)i&l(w2 (11) 

and attempt to interpret (10) as the Hopf equation (1~ associated with a 
scalar random field g(w, t) whose dynamics is governed by 8g/Ot = V[g] 
or, explicitly, 

8g ~ 8g , 8g 
-~x~+-~-~v~ f dw, F~(w, w,) g(wl, t ) = 0  (12) 0--7 + v 

Evidently not all solutions of Eq. (10) are characteristic functionals of 
probability measures. However, from the definition (6) of G[r/, t] we have 
(i) GI-0, t] = 1, (ii) G is continuous in q, and (iii) G[r/, tl  is nonnegative 
definite, i.e., Zk.~ ckg~G[tlk--q~, t] >>. 0 for the arbitrary sets of n functions 
{ffkl 1 <<.k<.n} and n (complex) numbers {Ckl 1 <<.k<~n} with n =  1, 2 ..... 
Thus, G[r/, t] is the characteristic functional of a countably additive, 
positive, and normalized probability measure defined on the dual of a 
nuclear test function space. (12) Consequently, there exists a generalized 
random field gO1) - (g, it) = ~ dw g(w, t) tl(w) such that 

a [q ,  t] = f e 'g(") dTt(g ) - ~gE~l, t] (13) 

where 
E ] 

where F~(wl, w 2 ) - F ~ ( x l - x 2 ,  v2) is the same pressure-viscosity kernel 
defined by (4). Equation (9), which governs the statistical dynamics of 
boundary-free incompressible fluids, also follows at once from the general 
Liouville-type equation (1~) governing the statistics of arbitrary functionals 
of u(x, t). 

Formally, one may rewrite Eq. (9) as 
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where dT,(g) represents the measure associated with g(w, t). Therefore, on 
the space of functions ~/(w), the p.d.f, generating functional of u(x, t) 
formally coincides with the characteristic functional of g(w, t); accordingly, 
we have 

t) =f,(wl,..., w,, t) for all n ~> 1 

Observe that g(w, t) and u(x, t) specify the physical ensemble of turbulent 
flows at the same statistical information level; thus, the entire statistical 
turbulence dynamics of incompressible viscous fluids can be based on 
Eq. (12), which is formally similar to Vlasov's equation [-see ref. 13 for 
equations similar to (12)]. Since the moments of g(w, t) must be positive 
and normalized with respect to v integrations over R 3 for arbitrary sets of 
noncoincidental phase points, one sets g(w, t) >~ 0 and ~R3 dv g(w, t) = 1 for 
(almost) all realizations of g(w, t). 

It follows from (7) and the incompressibility condition V-u  = 0 that 

G[q + v.V~b, t] =GEq, t] (14) 

where r = r is a test function of spatial coordinates only, or equivalently 

8 6G t" 
J dvv = - 0  (15) 

8 x  = (~q(w) 

The condition (15) clearly implies 

8 fdvkv~fn(wl,..., wn, t ) = 0  (16) 
ax~ 

for 1 ~< k ~< n and n = 1, 2 ..... Since the Navier-Stokes dynamics preserves 
the solenoidal character of Uo(X), it is sufficient to invoke (14) or (15) for 
the initial state G0[q] only. Similarly, the consistency of solutions to 
Eq. (12) with incompressibility at all times implies 

8 fdvv~g(w , t )=O 
0x ~ 

(17) 

for t~> t o. In addition to (14), G[~/, t] also satisfies various compatibility 
relations from which corresponding well-known constraints on p.d.f.'s can 
be derived. (4) For  example, for 1 <~k<~n, we h a v e  

(5~G _ i k (~n - k G 
(18) 

(~q(Wk + 1)' '" (~q(Wn) 
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which gives the reduction property 

f . . . f d v l  " "dvk f , (w t , . . . ,  wn, t) =f,,_k(wk+ 1,..., W., t) (19) 

with f0 = 1. Moreover, for 1 ~< k ~< n and 1 ~< 1 ~ n, 

6"G 
lira 

~ ~ x, 6t/(w l ) . . . ~t/(w,) 

5 . - I G  
= i6(vk -- vl) 6 t / ( w l ) ' "  at/(w~-1 ) 6t/(wk + 1 ) " "  6t/(w~) 

yields 

(20) 

lim f n ( W 1  . . . . .  W n ,  t ) = 6 ( v ~ - v t ) f n  1(wl ..... wk_ l ,  w~+l ..... w, ,  t) (21) 
x k ~ x l 

The LMN hierarchy (3) can now be derived from (9) by just taking 
functional derivatives, and possible closure approximations associated with 
p.d.f.'s may be represented as constraints on G[q, t]. The quantity 
In G[t/, t] generates the correlation density functions C~(wl ..... w~, t) of 
u(x, t), which are defined by the familiar relations 

el (w1,  t ) = f ~ ( w l ,  t) 

C2(wl, w2, t ) = f 2 ( w , ,  w2, t ) - A ( w l ,  t) A(w~,  t) 

C3(WI, W2, W3, t )=f3(Wl,  W2, W3, t)--f l(Wl,  t ) f2(w2,  W3, t) 

-L(w~,  t)f~(w~, w3, t) 

-f l (w3,  t) f~(wl ,  w2, t )+  2f l (wl ,  t) f l (w~,  t) f d w 3 ,  t) 

(22) 

etc., such that 

l n G [ t / , t ] =  ~ ... d w l . . . d w ~ C , ( w l , . . . , w n ,  t ) t / (w l ) . . . t / (w~)  
n = l  

(23) 

The dynamical equation for In GEt/, t] is nonlinear and leads to a non- 
linear hierarchy for the Cn; however, the statistical information contained 
in Cn is not as redundant as that carried by fn, and the Cn's permit more 
explicit closure approximations due to their cluster properties. Evidently, 
the Cn's can be regarded as the (specific) cumulants of g(w, t). 
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Finally, note that Hopf's original characteristic functional (a~ for 
u(x, t) is a particular restriction of G[~/, t]. On the subset {t/(w) l~(w)= 
v-O(x)}, where O(x) is a spatial test vector field, one has 

and 

G[q,t]l,=~ o=<exp{if dxO(x)u(x,t)})=-q~.[O,t] 

~nG 
f ''" f dVl . . . du  n u~ 1 " ' 'V:n(~(W1). . . (~ , (Wn ) rl=v. 0 

~O~,(x~)... ~O~~ 

(24) 

(25) 

3. F O R M A L  S O L U T I O N S ,  M O D E L S ,  A N D  
I N T E R P R E T A T I O N  OF g(w, t) 

The general solution of the initial value problem 
Eq. (9) admits an integral representation 

associated with 

6[, i ,  t] =j"  6o[,7o] d,~(,1o, to; ,7, t) (26) 

where #(tto, to; ~/, t) is the (generalized) Green's measure from a statistical 
state at to to the state at t > to. The limit form of the iterated composition 
property of Green's measures for small time intervals (4'~4) gives 

GEq, t)--ff~w,,~=" dE~]dE0] GoE0(w, to)] 

xexpti~'dvf~ ",o dw[(b~+OV[~]]} (27) 

where the functional integrations are over the continuous one-particle time- 
dependent phase functions 0 - 0(w, v) and ~ - ~(w, ~), to ~< v ~ t, such that 
0(w, t) = r/(w), q~ - (0/0r) 0(w, ~), and the measure dE0] ~ lqw,~ dO(w, v), 
to<~ < t, formally corresponds to the lattice approximation of phase 
functions.~4,~4) Now, from (27) one derives 

f,(w, ..... w,, t ) = [ I  dee] dE0] GoE0(w, to)] r t) 
( w , t )  = 0 I 
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which reveals that the exact determination of a p.d..f, of any order at time t 
requires the prescription of all p.d.f.'s at to < t. Note from (11) that V[(] is 
quadratic in ~(w, z). Therefore, the integrals over this function can formally 
be performed by applying the standard procedure(~5~; however, one is still 
left with the problems of evaluating the inverse kernel and functional deter- 
minant, which both depend on ~b(w, z). 

Within the p.d.f, generating functional formulation, a class of solvable 
simple models for fluid turbulence is provided by 

G[,~, t]=Go[ f dw, X(w~, t; w, to) ,7(w~) 1 (29) 

where the kernel function K(w, t; wl,  tl) represents a particular model and 
satisfies K(w, t; w~, t ) = 6 ( w - w l ) .  Statistical consistency is guaranteed if, 
for each model, the corresponding random field g(w, t) is governed by a 
linear evoluation equation which admits K(w, t;w~, t~) as its Green's 
function in R 6. Since the nonlinearity characteristics of an equation 
satisfied by g(w, t) differ from those of the corresponding equation for 
u(x, t), (29) is not restricted to a dynamics linear in u(x, t). For example, 
the models defined through 

~?g ~?g + ~ (H~ g) = 0 and 0 t  + v~ ax ---z av a 8x-- ~ dv v~g = O 

where H ~ = H ~ ( x , v ,  t) ( 7 = 1 , 2 , 3 )  is sufficiently smooth and otherwise 
arbitrary, correspond to 

~U ~ o ~/J~ 
a--~+u' -~x~=H~(x ,u , t )  and V . u = O  (~= 1, 2, 3) 

Evidently, the p.d.f.'s of turbulent flows specified by (29) are com- 
pletely determined by only their own initial values as 

X(w~,.. . ,  wn, t) = f . . .  f dw', . . .  dw',K(w~, t; w',, to) 

• �9 . . K ( w , ,  t; w',, to)f~(w'~ ..... w',, to) (30) 

for all n ~> 1. 
To find a physical interpretation for g(w, t), consider the formal 

connection between Bogolyubov's functional (9) 

2~[q, t] = 1 +Nq(qk ( t ) ,  pk(t)) m 

1 



PDFs of Navier-Stokes Turbulence 1269 

and the characteristic functional 

q~MEq, t ] = ( e x p { i f  d q d p q ( q , p ) M ( q , p , t ) } )  m 

of the microscopic one-particle (~6) density 

V N 
M(q, p, t) = -~ k~ 6(q - q~(t)) 6(p -- pk(t)) 

associated with N identical molecules of mass m confined to a region of 
volume V. Here q is a real test function, (qk, Pk) are the state variables of 
the kth molecule, and ( ' ' ' ) m  denotes an averaging over the molecular 
ensemble. We have 

] 2 ~ ( e ' V ~ - l ) , t  =~ME~,t] (31) 

where g=  V/N. As the average number density ~ -  1/15--* oe and m ~ 0 
such that m~ remains finite, the molecular system behaves more like a 
"continuum" and (31) becomes L~'[ir/, t]  = q)M[r/, t]. In this "fluid limit," 
M(q, p, t) satisfies Vlasov's equation, which can be regarded as the 
Klimontovich equation without the discrete particle structure. (17~ By com- 
paring this limit case with (13), one can gues that g(w, t) plays the role of a 
microscopic phase density for fluid particles. To verify this, let us introduce 
the fluid dynamical versions of 5~ t] and M(q, p, t) for t>~ to as 

~FD/ ,  t]  = limN~oe {k ~=1 El+O(a~)q(r(ax't)'v(ak't))]l (32) 

and 

D(x, v, t) - D(w, t) = fR3 da 6(x - r(a, t)) 6@ - v(a, t)) (33) 

respectively. In (32), f2(a~) is the small volume element in R 3 which con- 
tains the fluid particle labeled by ak at time to; clearly, to cover each fluid 
particle, g?(ak) ~ 0  as N ~  oe. From (32) and (33) we have 5~rEitl, t] = 
( iSdwq(w)D(w,  t ) ) -=  O spit/, t],  and from definitions (6) and (32) and 
relation (13) we also have ~FEi~, t] = G[r/, t]  = cbg[rt, t]. Therefore, the 
microscopic density D(w, t) and g(w, t) are statistically equivalent. It can 
be shown that if r(a, t) and v(a, t) are the solution of the continuity and 
Navier-Stokes equations with prescribed initial values r(a, to) and v(a, to) , 
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then D(w,  t) satisfies (17) and is the solution of Eq.(12) with the 
corresponding initial condition 

O(w,  to) = f da g (x  - r(a, to) ) 6(v - v(a, so)) 

= (~(v - v(x, to)) = 6(v - u(x,  to)) 

Equation (12) also admits regular solutions, such as the one-point p.d.f. 
f l ( v ,  x, t), which represents statistically independent fluid particles through 

f n ( w ~ , . . . , w , , t ) =  ( I  f l ( w k ,  t) forall n~>l 
k = l  

In this special case and for n = 1, Eq. (3) is identical to Eq. (12) and the 
functional exp{i~ dw 1 q ( w l ) f ~ ( w ~ ,  t)} satisfies Eq. (9). 

In modern formulations of Bogolyubov's functional method, s t] 
is treated as the space characteristic functional of a random field associated 
with the (microscopic) dynamics of molecules. (is) This point of view was 
previously taken by Hosokawa, ~19) who also gave a formal general solution 
of the corresponding molecular functional equation by adopting Rosen's 
solution method (14) for Hopf's equation. 

4. C O N C L U D I N G  R E M A R K S  

The formulation presented here can be extended to a space-time 
satistics by introducing 

G[~] = exp dt da ~(r(a, t), v(a, t), t) (34) 
0 3 

where ~(x, v, t) is the test function. G[~] generates the multiple-time p.d.f.'s 
of u(x,  t) for incompressible fluids and leads to a coupled hierarchy for 
these p.d.f.'s. (4) A statistically closed extension to open fluids (excited by 
random forces with a white noise Gaussian statistics) is also possible. In 
this case a statistical equilibrium can be maintained between the energy 
input of stationary stirring forces and the viscous dissipation; consequently, 
the time-independent solutions of equations corresponding to (3) and (9) 
are of physical significance. The definitions (6) and (34) are not restricted 
to incompressible fluids; however, the statistical dynamics of compressible 
fluids requires a joint generating functional of hydrodynamic fields. Finally, 
bounded fluids can be handled by extending Eq. (2); the pressure term in 
the interaction kernel (4) must include the appropriate Green's function 
for the prescribed domain, with the equation corresponding to Eq. (9) 
requiring an additional boundary condition on G[~, t]. 
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